Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
J Infect Dis ; 226(5): 944-945, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: covidwho-20243076
2.
Epidemics ; 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2251893

RESUMEN

Background: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. Methods: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark);second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020);third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). Findings: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. Interpretation: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.

3.
Epidemics ; 43: 100677, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2251894

RESUMEN

BACKGROUND: Contact tracing is one of the most effective non-pharmaceutical interventions in the COVID-19 pandemic. This study uses a multi-agent model to investigate the impact of four types of contact tracing strategies to prevent the spread of COVID-19. METHODS: In order to analyse individual contact tracing in a reasonably realistic setup, we construct an agent-based model of a small municipality with about 60.000 inhabitants (nodes) and about 2.8 million social contacts (edges) in 30 different layers. Those layers reflect demographic, geographic, sociological and other patterns of the TTWA (Travel-to-work-area) Hodonín in Czechia. Various data sources such as census, land register, transport data or data reflecting the shopping behaviour, were employed to meet this purpose. On this multi-graph structure we run a modified SEIR model of the COVID-19 dynamics. The parameters of the model are calibrated on data from the outbreak in the Czech Republic in the period March to June 2020. The simplest type of contact tracing follows just the family, the second tracing version tracks the family and all the work contacts, the third type finds all contacts with the family, work contacts and friends (leisure activities). The last one is a complete (digital) tracing capable of recalling any and all contacts. We evaluate the performance of these contact tracing strategies in four different environments. First, we consider an environment without any contact restrictions (benchmark); second with strict contact restriction (replicating the stringent non-pharmaceutical interventions employed in Czechia in the spring 2020); third environment, where the measures were substantially relaxed, and, finally an environment with weak contact restrictions and superspreader events (replicating the situation in Czechia in the summer 2020). FINDINGS: There are four main findings in our paper. 1. In general, local closures are more effective than any type of tracing. 2. In an environment with strict contact restrictions there are only small differences among the four contact tracing strategies. 3. In an environment with relaxed contact restrictions the effectiveness of the tracing strategies differs substantially. 4. In the presence of superspreader events only complete contact tracing can stop the epidemic. INTERPRETATION: In situations, where many other non-pharmaceutical interventions are in place, the specific extent of contact tracing may not have a large influence on their effectiveness. In a more relaxed setting with few contact restrictions and larger events the effectiveness of contact tracing depends heavily on their extent.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Trazado de Contacto , Pandemias/prevención & control , SARS-CoV-2 , Brotes de Enfermedades/prevención & control
4.
J Infect Dis ; 226(5): 941, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2037452
5.
PLoS One ; 17(7): e0270801, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2021854

RESUMEN

Studies demonstrating the waning of post-vaccination and post-infection immunity against covid-19 generally analyzed a limited range of vaccines or subsets of populations. Using Czech national health data from the beginning of the covid-19 pandemic till November 20, 2021 we estimated the risks of reinfection, breakthrough infection, hospitalization and death by a Cox regression adjusted for sex, age, vaccine type and vaccination status. Vaccine effectiveness against infection declined from 87% at 0-2 months after the second dose to 53% at 7-8 months for BNT162b2 vaccine, from 90% at 0-2 months to 65% at 7-8 months for mRNA-1273, and from 83% at 0-2 months to 55% at 5-6 months for the ChAdOx1-S. Effectiveness against hospitalization and deaths declined by about 15% and 10%, respectively, during the first 6-8 months. Boosters (third dose) returned the protection to the levels observed shortly after dose 2. In unvaccinated, previously infected individuals the protection against infection declined from 97% after 2 months to 72% at 18 months. Our results confirm the waning of vaccination-induced immunity against infection and a smaller decline in the protection against hospitalization and death. Boosting restores the original vaccine effectiveness. Post-infection immunity also decreases over time.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , República Checa/epidemiología , Hospitalización , Humanos , Pandemias , Vacunación
6.
Bull Math Biol ; 84(8): 75, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1899295

RESUMEN

Running across the globe for nearly 2 years, the Covid-19 pandemic keeps demonstrating its strength. Despite a lot of understanding, uncertainty regarding the efficiency of interventions still persists. We developed an age-structured epidemic model parameterized with epidemiological and sociological data for the first Covid-19 wave in the Czech Republic and found that (1) starting the spring 2020 lockdown 4 days earlier might prevent half of the confirmed cases by the end of lockdown period, (2) personal protective measures such as face masks appear more effective than just a realized reduction in social contacts, (3) the strategy of sheltering just the elderly is not at all effective, and (4) leaving schools open is a risky strategy. Despite vaccination programs, evidence-based choice and timing of non-pharmaceutical interventions remains an effective weapon against the Covid-19 pandemic.


Asunto(s)
COVID-19 , Máscaras , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , República Checa/epidemiología , Humanos , Conceptos Matemáticos , Modelos Biológicos , Pandemias/prevención & control , SARS-CoV-2 , Instituciones Académicas
7.
J Infect Dis ; 226(8): 1385-1390, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1886447

RESUMEN

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades immunity conferred by vaccines and previous infections. METHODS: We used a Cox proportional hazards model and a logistic regression on individual-level population-wide data from the Czech Republic to estimate risks of infection and hospitalization, including severe states. RESULTS: A recent (≤2 months) full vaccination reached vaccine effectiveness (VE) of 43% (95% confidence interval [CI], 42%-44%) against infection by Omicron compared to 73% (95% CI, 72%-74%) against Delta. A recent booster increased VE to 56% (95% CI, 55%-56%) against Omicron infection compared to 90% (95% CI, 90%-91%) for Delta. The VE against Omicron hospitalization of a recent full vaccination was 45% (95% 95% CI, 29%-57%), with a recent booster 87% (95% CI, 84%-88%). The VE against the need for oxygen therapy due to Omicron was 57% (95% CI, 32%-72%) for recent vaccination, 90% (95% CI, 87%-92%) for a recent booster. Postinfection protection against Omicron hospitalization declined from 68% (95% CI, 68%-69%) at ≤6 months to 13% (95% CI, 11%-14%) at >6 months after a previous infection. The odds ratios for Omicron relative to Delta were 0.36 (95% CI, .34-.38) for hospitalization, 0.24 (95% CI, .22-.26) for oxygen, and 0.24 (95% CI, .21-.28) for intensive care unit admission. CONCLUSIONS: Recent vaccination still brings substantial protection against severe outcome for Omicron.


Asunto(s)
COVID-19 , Vacunas , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunación
8.
Sci Rep ; 12(1): 7638, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1830098

RESUMEN

Following initial optimism regarding potentially rapid vaccination, delays and shortages in vaccine supplies occurred in many countries during spring 2021. Various strategies to counter this gloomy reality and speed up vaccination have been set forth, of which the most popular has been to delay the second vaccine dose for a longer period than originally recommended by the manufacturers. Controversy has surrounded this strategy, and overly simplistic models have been developed to shed light on this issue. Here we use three different epidemic models, all accounting for then actual COVID-19 epidemic in the Czech Republic, including the real vaccination rollout, to explore when delaying the second vaccine dose by another 3 weeks from 21 to 42 days is advantageous. Using COVID-19-related deaths as a quantity to compare various model scenarios, we find that the way of vaccine action at the beginning of the infection course (preventing infection and symptoms appearance), mild epidemic and sufficient vaccine supply rate call for the original inter-dose period of 21 days regardless of vaccine efficacy. On the contrary, for the vaccine action at the end of infection course (preventing severe symptoms and death), severe epidemic and low vaccine supply rate, the 42-day inter-dose period is preferable, at any plausible vaccine efficacy.


Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA